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conditions, Maxnet has faster convergence speed and better fairness tracking capability than SumNet in a 
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Over more than two decades, the Internet has grown from a small scale network to a huge widely 
t is becoming 

ontrol aims 
nt in the overall 

QoS infrastructure in IP networks. Generally speaking, fair resource allocation means that no user should 
be overly penalized to favor other users who share the same resources. With this loose definition, the 
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Abstract. It has been analytically proved that both MaxNet and SumNet can achieve m
allocation in static networks. In SumNet networks, such as the TCP algorithm of the current I
source rate is controlled by congestion signal which is the sum of signals from all of the congest
along the path from the source to the destination. In MaxNet networks, only the most co
generates the control signal to dictate the source rate.  This paper investigates the practical asp
schemes, specifically, the convergence speed and fairness tracking capability under transi
conditions. We have shown that the stability of SumNet’s max-min fairness heavily dep

the cost of response speed. An enhanced approach is proposed to improv

 

1. INTRODUCTION 

deployed system. As the Internet continues to expand in size, complexity and service variety, i
increasingly difficult to design a fair and efficient resource management scheme.  Congestion c
to achieve fairness and maintain a high quality of service (QoS). It is an important compone
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purpose of congestion control is to guarantee the resources are fairly allocated and highly utilized under 
network capacity constraints. 
 

s [1] [2], in 
ehavior in a 
lar feedback 
ersed by the 
erload. Such 

istinguish it from another congestion 
control scheme, MaxNet, where the sources are not told the sum of prices, but are instead told the 
m

gning end-to 
 with special 

aximize the 
for selecting 
es the target 
nd Mo and 

 that max-min fair allocation can be obtained in the limit of certain utility functions 
defi nk prices by 

l behaved 

on pairs and 
dictably, the 
e QoS. Slow 

sients and it is responsible for packet delay, delay-jitter, underutilization 
a s and makes 

 control 
Inevitably, a 

SumNet and MaxNet in obtaining max-
min fair allocation in transient networks. The transient environment adopted in our study reflects a common 
I ks. We have 

 to converge 
f the fairness 

reviewed. In 
e well-known max-

min fairness approach for SumNet proposed by Mo and Walrand in [7]. We identify the stability problem 
in the approach of [7] that makes it impossible to obtain accurate max-min fair allocation. To compare the 

oach to obtain scalable 
 fairness for SumNet networks, presented in Section 5. In Section 6, the transient 

 the enhanced SumNet and MaxNet protocols are examined and compared. The analytical 
r on 7. 

2. SUMNET: AN OPTIMIZATION BASED NETWORK CONGESTION 
CONTROL 

The SumNet congestion control architecture is formulated as a concave optimization problem over 
linear constrains, reported in remarkable studies [1] [2] [7]. Let L be the a set of links shared by set of 

Congestion control based on utility maximization has been developed in recent studie
which fairness is considered as a primary objective in shaping end-users’ cooperative b
distributed manner.  In this approach, a network controls the rate of a source by sending it a sca
congestion signal, which is generated by summing the “congestion prices”, of all links trav
source’s packets.  The links adapt their congestion prices to achieve full utilization, without ov
networks are referred to as SumNet as in [3]. The term is used to d

aximum price, such that only the most congested link controls the source rate.  
 
The classical bandwidth sharing principle, max-min fairness, is the general guide in desi

end congestion protocols [4] [5]. Recently, SumNet was shown to achieve max-min fairness
selection of utility functions defined for sources [2, 6, 7]. With the selected utility functions, m
aggregated utility achieves max-min fairness. Low et al. suggested a centralized technique 
collaborative utility functions such that the output is max-min fair [2]. However, this requir
max-min fair allocation to be known in advance. Other approaches proposed by Kelly [6] a
Walrand [7], show

ned homogeneously by users.  Adopting a different approach to communicating the li
routers, MaxNet can obtain max-min fairness for homogeneous sources with a wide range of wel
demand functions [3].  

 
Fairness is usually considered in static networks with a fixed number of source-destinati

shared resources.  In volatile networks, in which resources and service request may vary unpre
convergence becomes an important issue. The convergence speed could have big impacts on th
response results in long traffic tran
nd buffer-overflow. Reducing the duration of transients can partially solve these problem

smaller buffer sizes possible. Therefore, to evaluate performance and feasibility of congestion
algorithms, both fairness and dynamic behavior have to be taken into consideration. 
reasonable compromise has to be made. 

 
In this paper, we study the convergence characteristics of both 

nternet environment where sources come and go and data is transferred via fixed network lin
defined two transient response properties: (1) speed of response: The time taken for the system
to a new equilibrium state after a transient starts; (2) fairness tracking capability: robustness o
tracking in volatile networks where sources come and go with high frequency. 

 
The paper is organized as follows: In Sections 2 and 3, SumNet and MaxNet are 

Section 4, we use control models introduced in [8] to analyse dynamic properties of th

two algorithms, we have extended the work of [7] and proposed an enhanced appr
stable max-min
performance of
esults are verified by a series of experiments with fluid-flow approximated simulation in Secti



estination pairs, indexed by . Each link  i I∈ l L∈  source d has finite capacity  The routing matrix is 
defined as: 

 (1) 

rce i e

lC .  R

1 if source  uses link i l
R

⎧
= ⎨  

0 otherwiseli
⎩

Each sou  has a transfer rat ( )ix t at time t; the set of flows traversing link l generate an aggregate 

transmission rate ( )ly t at link l su

 (2) 
e n be ated transfer 

creasing and 

ch that: 

( ) ( )l li i
i

y t R x t= ∑  
Suppose that each source’s b nefit ca  characterized with a utility function of alloc

rate ( )iU x . Throughout this paper, we assume that the utility function is a strictly concave, in
continuously differentiable function of ix , over 0ix ≥ . Such a utility function results in e
networks where

lastic traffic 
 minus the total price it 

p and fairly to avoid the 
resource overload.  

Using the notation below, the price per unit ndwidth flowing through link l is adapte : 

 each user tries to maximize its own net utility, defined as the utility
ays. Since the resources are finite, this behavior should be controlled properly 

ba d as

( )
( )( ) ( )

( )( ){ } ( )
0

0

if 0

max 0, if 0

l

l

l l l

l

l l l

y t C p td p t
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γ
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⎧
⎪
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⎪
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and 

 ( ) ( )( ) ( )' 1
i i i li l

l
x t D q t U R p t− ⎛ ⎞

⎜ ⎟
⎝ ⎠

= = ∑  

The link integrator 

(4) 

(3) tries to match the aggregate input rate ( )ly t  with the virtual target
which is set slightly less than the real link’s capacity lC  to te the link’s queue at equilib
the integral of ( )

 capacity
 elimina rium. Hen

0lC  
ce, 

0l ly C− be regarded as a “virtual” queue. The can gain, link 0 , is to be chos
ired dyn

en to 
amic 

lγ >
determine the tradeoff between the stability and convergence speed, depending on the des
behavior. In [8], Pa nini et al. suggested to define the step size  01/l lCγ =  for a scalga able stem; in
case, the conge can be regarded as rtual qu . 

erse of

sy
p

 this 
stion rices ( )lp t  the vi euing delays

In (4), ( )' 1 .rU −  is the inv  ( )' .rU , and sources adjust their transfer rates through th
demand function D in 

e decreasing 
 as 

 (5) 

rce’s utility function

(4) in response to congestion price accumulated from all links on its path
( )i lq t ( )il

l
R p t=∑  

s ( )U xGiven sou r r

all trajectories of the algorithms converge and at equilibrium, the sources’ rates seek to maximi
profit [1]         
 Maximize ( )i i

i
U x∑  

     subject to 

, the equations (3) and (4) have a unique a oint to which 
ze the global 

(6) 

st b el  p

Rx C≤  
The demand function in 

(7) 
asing utility 

function. These demands are accommodated by (3) and (4) at an equilibrium whose fairness is dictated by 
the appropriate choices of source utility function [6] [7] [2]. This strategy provides a “soft” way of 
imposing fairness (weaker than, e.g.,“max-min” fairness), or alternatively service differentiation. Classical 
max-min fairness was investigated as a limiting case of utility maximization with logarithmic and non-
logarithmic utility functions  [6] [7]. Adopting a logarithmic utility function proposed by Kelly’s work 
results in so-called “proportional fairness”[1]. An alternative utility function with decreasing gradient, 

(4) illustrates how users’ demand is encoded by a concave incre



( )( ) 1/i iU x x= − , leads to the resource-sharing objective of minimizing the sum of the reciprocal of rates. 
Mo and Walrand de ed a class of utility functions  
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1
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(with ) and the corresponding demand functions  

 

 ( )( ) ln  if 1i i iU x w x α= =
1/α

( ) i
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i
D q

q
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(9) 

 function (9) 

⎜ ⎟⎜ ⎟
⎝ ⎠

=  

At equilibrium, the resulting allocation obtained by the algorithm (3) and (4) with demand
can be termed weighted α -fair uch that if 1,iw i I s = ∀ ∈ , choosing values of α =0, 1α = and α = ∞  

airness, 
eans for 
urce for 
aper, by 

result in allocation which achieves maximum throughput, proportional fairness and max-
respectively [7]. The weighing factor iw  in all three criteria is regarded as an administrativ
differentiating policy such that an increase in this weight leads to an inc

min
e

cated 
hout th

 f
 m

rease in o reso
that source. Since we ar m fairness objective, throug is p

the all
e pri arily concerned about max-min 

default, the demand function (9) is referred with the weighing factor 1iw = . 

3

d is section. As 
 twork links. 

Unlike SumNet network where all traversed links’ prices are added up to provide th rol signal as 
gi

n its path:  
L (10) 

Net.  MaxNet is 
known to achieve m min fair allocation for sources with wide range of homogeneous demand functions 
[3]. At steady stat ) , resource allocated to source i depend n h tude of its 
demand function rel her sources sharing its controlling link l. If  is the set of sources 

i  is 

. MAXNET: A MAX-MIN FAIR BASED CONGESTION CONTROL 
MECHANISM 

The MaxNet network architecture an  its resource allocation principle is presented in th
its name suggests, MaxNet uses the Max function in computation of congestion price at ne

e cont

s o  t e m

ven by (5), MaxNet links select the Maximum value as the feedback signal. It implies that in MaxNet 
network, source i is controlled by feedback price ˆiq  generated by the tightest bottleneck link o
 { }ˆ ˆmaxi l iq p=

Here, the hat ( ⋅$ ) identifies MaxNet variables which have related variables in Sum

, l∈  

a
e,

ati

x-
  agni( ) (1l lp t p t+ =

ve to those of ot l

traversing link l and link l has the highest price on path of flow i, then the rate allocation to source 
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∈

=
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Dynamic properties of MaxNet, such as scalability and convergence, were also stu

(11) 

died by using control 
theoretic analysis in [9, 10]. By adopting similar scalable laws as in [8], MaxNet is proved to be stable for 
arbitrary capacities, delays and routing with appropriate choices of parameters [9]. More importantly, 

ents on availability of information. 
oreover, under stable conditions, MaxNet was proved to outperform SumNet with faster convergence 

s  control loop 
e.  

4. MAX-MIN FAIRNESS AND INSTABILITY OF SUMNET  

SumNet has been proven to obtain max-min fairness at equilibrium in a static network [6] [7]. The next 
question is how it guarantees system stability over arbitrary range of operating points. In this section, we  
investigate the stability of SumNet’s max-min fair allocation from control point of view.  We adopt the 

MaxNet was shown to achieve this robust stability with less requirem
M
peed very near a network equilibrium [10]. The proof was based on analyzing the root loci of

models of MaxNet and SumNet networks where sources having the same value of round trip tim



scalable laws proposed in [8] which proposed the guideline to choose demand functions i ( )i ix D q=
system stability remains 

so that 
robust with arbitrary network parameters such as capacities, twork 

topologies.  This requires that 

 

delays and ne

( )
( )

'

0 i iD q
2i i i iD q M
π
τ

≤ − <  (12) 

Here iM is the number of traversed links with non-zero price along source i’s path and iτ is source i’s 
round-trip-time, assumed to be fixed and monitored at the source. It is also assumed that the link gain is 
scaled down with own capacity at each link as follows 

1 ,l
l

l
C

γ = ∀  

The stability law (12) provides a framew for analyzing scalable stability of s

(13) 

ployed with 
umNet with 

ork ystem em
specific demand functions. Following that guideline, we study the stability properties of S
sources adopting the demand function in  (9) and α → ∞ for max-min f irness as proposed in [7]. 

Prop
a

], with large osition 1:  The framework (3) and (9) [7 α  for max-min fairness, results in system 
in uch that th ngestion price  is less than unity for 
some i. 

e co iqstability when network experiences small load s

Proof: For the demand function (9),  the source gain is  

 ( 1) /

1iD

i iq q α αα −∂
(14) 

The negative si n indicates decreasing demand function. From (4) the relations between the 
f

 

∂
= −  

g hip 
eedback price and source transfer rate can be expressed as 

( )' 1
i i i

i

q U x
x

α
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

 (15) 

m he link gain Next, we apply the stability condition (12) to the ax-min approach in (3) and (9). By (13), t
is  

)
( )
(' 1

2
i i i

i i i i i

D q x
D q q M

α π
α α τ

− = = <  

Since our major concern is the effect of the increasing

(16) 

α  on SumNet’s stability for 
fairness approach with the demand function 

the max-min 
d as specified in (13), as 

a
(9), we assume that link gain is fixe

re the iM  and iτ values. Then the left  hand side of (16) is determined only by values o  αf  and the 

t x he max-min fair operating point has then (16) is violated for su tly large operating poin i.  If  t 1>ix fficien
α . Th  the question of what the units of xi are. Is t ld 1bit/s or 1Gb/s?  The answer is that is leaves he thresho
the units are implicit in (9).  Thus, the system is unstable if 1i iq w< = , as was to be proved. 

zen” with 

- AIRNESS  

In order to analyze and compare the dynamic properties of SumNet and MaxNet max-min fair 
allocation, we propose an enhanced framework for SumNet to obtain stable max-min fair allocation with 
arbitrary network parameters.  The key challenge is how to solve the stability problem caused by large 

Note that if 1iq ≥ for all i, then the control gains all tend to 0, and the system becomes “fro
suboptimal rates. 

5. STABLE APPROACH FOR SUMNET’S MAX MIN F

α  
 can in the source’s demand function mentioned in the earlier analysis, so that equilibrium allocation

converge more closely to the target max-min fairness with arbitrarily large α  values.  



 
This can be achieved by a demand function that satisfies the bound (12) for all α  and s

system equilibrium to max-min fairness. Let 
till drives the 

τ be an upper bound on the round trip time of an
network. In general, the maximum RTT will not be kno

y flow in the 
wn by the sources, but it is reasonable to assume 

that an upper bound is own. Consider now the demand function kn

( )
1

 i
i

q x t C
M

αβα
τ

⎛ ⎞= ⎜ ⎟
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 (17) 

again with 
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( )( ){ } ( )0max 0, if 0
l

l

l l l
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dt y t C p tγ
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− =⎪⎩

where, 

0 if 0
ll l ly t C p td γ⎧ − >⎪=  (18) 

M  is an upper bound of number of traversed links, also assumed to be known followi
also define 

ng [8]. We 
C  as a global b linksound of ’ capacities and assume that it is known at sources. β  is a 

positive constant to be chosen to adjust the source gain and will be detailed later. The corresponding 
source’s utility function for which ' 1

i iD U −= ) is  (
1

 ( ) ( )1

i

i i

xM C
CU x

α

τ

βα α

⎛ ⎞
⎜ ⎟
⎝ ⎠=
−

 

Now, we will prov at, with 

−

(19) 

e th α →∞ , the system (3) and (4) maximizes our new utility function (19) 
a ints. The nd results in max-min fairness at equilibrium and the system is stable at arbitrary operating po
new proposed utility function (19), with 1α > , is a continuous, twice differentiable, stri
increasing and negative 

ctly concave, 
function.  according to [7], the rates which maximize the sum of the 

utility functions (19) with
Therefore,

α →∞ converges to max-min fairness.   
Firstly, we analyze the stability of our system, by studying the inequality (12) with the demand function 

 

given by (17), yielding 

( )
( )

' 10
2

i i

i i i i

D q
D q q M

π
α τ

≤ − = <  (20) 

eneralize the relationship between congestion price 
and transfer rate  

 

From the demand function (17) and from (4), we g

( )
( )

' i
i i i

xMq U x
C

α
τ

βα

Substituting 

−
⎛ ⎞= = ⎜ ⎟
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 (21) 

 (20), (21) into we obtain the requirement 

 ( )
( )

' 1
2

i i i

i i i i

D q x
D q q MM C

α
β π

α ττ
⎛ ⎞− = = <⎜ ⎟
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 (22) 

If β  is defined such that 0 / 2β π< < , the inequality (22) is s d withatisfie  arbitrary large α and other 
network parameter. Thus, as α →∞ , the obtained allocation appr aches to max-min fair
destab

o thout 
g the system. 

Since the above system approaches max-min fairness only as 

ness wi
ilizin

α →∞ , we now study other important 
dynamic properties in this regime.  In particular, we examine the system’s responsiveness, as characterized 
by the source gain. 

Proposition 2: The source gain implied by (17) and (18) tends to zero as α →∞ .  
Proof: Differentiating the source i’s demand function (17) with  respect to , we yield the source i’s 

gain  
 iq



1/
i i

i
D qC α

 
i iq q M

βα
κ

−∂ ⎛ ⎞= = − ⎜ ⎟  (23) 

Substituting  (21) into (23) gives the expression of source gain in terms of 

α τ∂ ⎝ ⎠

ix and α   
1

i
i

xC α

 
M C
βκ

+
⎛ ⎞= −  (24) 

τ ⎜ ⎟
⎝ ⎠

C  is the upper bound of links capacities, the ratio of / 1,ix C i≤ ∀  which implies the resuSince lt. □ 

Proposition 3: As α →∞  in (17) and (18) the source g given sources becoming
the source gain of a source with a larger bandwid

Proof: (2

ain for a  a vanishing 
fraction of th.  

By 4), the ratio of source i’s gain to source j’s gain is 1( / )x xi j
α+ , which tends to zero as 

α →∞  if i jx x< .□ 

Sources with lower source gains respond more slowly than sources with larger source gain
the rate of adaptation of all source goes to zero by Proposition 2, it goes to zero faster for 

s.  Although 
sources with 

lo ess w acerbated by 
 if two sources are both 

a  ( daptation).    
e

wer rates.  If two sources are both below their max-min fair rates, the unfairn ill be ex
the fact that the source with the smaller rate will respond more slowly.  However,
bove their max-min fair rates, this effect will improve the fairness for a given overall rate of a

Proposition 4: Using a SumN t to obtain max-min fairness by using (17) and (18) with α →∞ results 
s .  

e feedback price increases. Since the source 
gain (23) is a decreasing function of , source gain is consequently decreased.  Moreover, when the 

in exponential deceleration in respon iveness of sources when network congestion is increased
Proof: When a network becomes more congested, th iq

iq
demand function (17) is defined with greatα  for max-min fair allocation, this dramatically decelerates the 
response speed of SumNet sources in a heavily congested network . 

ET

In this secti escribe the version of MaxNet’s which will be compared with SumNet in the 
following section. Since MaxNet was proven to obtain max-min with homogeneous well ved demand 
functions [3], we can again use the demand function of (17) for MaxNet sources, however with 

6. MAX-MIN FAIRNESS AND DYNAMIC PROPERTIES OF MAXN  

on, we will d
-beha

1α = . This 
gives the control laws at MaxNet’s sources and links as follows: 

 $ ( )
$

.
i
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CMx t
q

τ
β

=  (25) 

)
( )( ) ( )

( )( )
(

( )
ˆlp t (26) 

0
0

0
0

1 ˆ ˆif 0

1 ˆ ˆmax 0, if 0

l

l

l l
l

l l
l

y t C p t
Cd

dt
y t C p t

C

⎧ − >⎪
⎪= ⎨ ⎧ ⎫⎪ − =⎨ ⎬⎪ ⎩ ⎭⎩

 

This again assumes that sources know upper bounds on their round trip times (τ ), t

 

he link capacities 
( C ) and the number of congested links on any path ( M ). Following [3] and [9], n conclude that for 
all 2

we ca
0 /β π< <
itrary routing

oreover, since t

, identified in Section 5, MaxNet’s framework (25) and (26) is also globally stable with 
arb s, link capacities and delays and results in max-min fair allo n at equilibrium. 
M he demand functions, and hence control gains, do not require 

catio
α →∞ , MaxNet can avoid 

the drawbacks of SumNet’s approach described in the previous section and thus can outperform SumNet to 
obtain accurate max-min fair allocation whilst maintaining a stable, faster and fairer system response.   



7. NUMERICAL RESULTS 

r models for 
networks. Various transient scenarios are generated and transient responses of the two 

a
ise a control 
and function 
m to achieve 

ies of  algorithms 
an provide a 

We have adopted the fluid flow approximated simulation [11] to simulate the linea
SumNet and MaxNet 
lgorithms are compared.  

We assume that our test system is a physically realizable system. Even it is possible to dev
strategy in which each source collects network parameters for tuning its own setting in dem
(equation (17) for SumNet or (25) for MaxNet) to optimize transient speed, a real time algorith
this is not easy. As our study mainly focuses on analyzing the dynamic propert  both
designed for max-min fairness, an experimental environment setup is more practical and it c
fair comparison. For SumNet, stable maximization framework (17) and (18) with increasingα → ∞

 o
 shared 

 is 
6) is ad n 

linear twork odel, acities 8.0 a .0 by 
p time

simulated and the system (25) and (2 opted for the MaxNet network. Both algorithms are tested
the same ne  m  shown in Fig. 2 with two links of fixed cap nd 10
sources with homogeneous round tri is iτ τ= ∀ . The other parameters are same for both Sum

M

Net and 

axNet: ie, 1.7β = , 2M = , 10C = . Also, for both algorithms, link gains are set to 1/ 0 ,l lC lγ =
capacity utilization is set to 95% such hat C C

∀ and 
 t l0 0.95 ,l l= × ∀ .  

Taking max-mi fairness as the target, we define the max-min unfairness index of location x , n  rate al
, as: relative to the target max-min fair allocation x

i i

i i

x
 ( )

x
U x

x

−
=∑  

Essentially, 

I (27) 

 is a measure of the deviation of an allocation ( )UI x x  from the target max-min fair 

allocation x . It implies that the smaller the value of ( )UI x , the closer the allocation x  to th

min fair allocation

e target max-

x . 

Three experiments have been conducted to verify our propositions and to demonstrate th
of MaxNet over the SumNet’s framework for obtaining max-min fairness. The first experim
that in a static network model with a fixed number of sources and links, SumNet’s c

e advantages 
ent verifies 

onvergence speed 
depends on the value of α as stated in Proposition 2. Our second experiment illustrates the SumNet 

roposition 3 
e systems 

ically.  

sources’ responsiveness and aggressiveness when network congestion varies as shown in P
and Proposition 4. The third experiment investigates the change-tracking capabilities of th
equipped with the two algorithms in a volatile network where sources turn ON and OFF period

A. Experiment 1: Effect of Large α  on  SumNet’s Transient  Performance  
Our network model has 3 sources as shown in Fig. 2. We performed a series of tests 

maximization as in 

 
on SumNet’s 

(17) and (18) with different α . At starting step 0,  3 sources are ON as 
Fig. 2. We generate the same transient scenarios for all experiments by activating 3 new sour
at the 30000th time step.  After the first 3 sources reach equilibrium, the transient time, meas
steps from the ti sient occurs until the time when the last so

illustrated in 
ces on link 2 
ured in time-

me tran urce’s rate is within of its final 
v s. The urve 

 1%±
dalue, is computed. Fig. 3 plots the system’s convergence time against the UI value ecreasing c

illustrates that, as α increases, the equilibrium allocation approaches max-min along wi
increase in system’s convergence time. It validates Proposition 1, ie  SumNet obtains max-m
the cost of decrease in system convergence speed. In contrast, MaxNet is shown to achieve a
min fair allocation as 

th 
i
bso

a gradual 
n fairness at 

lute max-
MaxUI is close to 0. Its convergence time is much shorter. Net

 2.75α = , 
However,

Fig. 7 provides a closer look at SumNet’s and MaxNet’s source’s transient behavior. With
SumNet source1 converges quickly to the new equilibrium when new sources are turned ON.  
with such a small α  value, source1’s rate cannot converge to the target max-min fair allo  cation. With

3.75α =
much slow

, SumNet source1 converges closer to max-min fairness after transience, however, its re  
er. Fig.  also shows that MaxNet’s source1 quickly tracks to the new equilibrium an  

to the target max-min fairness.  
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B. Experiment 2: Fairness Tracking Capability in Volatile Networks 
nder unstable 
ated periodic 
he new max-
ter transient 
ding to two 
le) transient 

nd S3 which 
are activated 
acks to new 

mean-square of the 
difference between sources’ rates and the target max-min fair rates during the period of tr ce: 

 

In this experiment, fairness tracking capabilities of both SumNet and MaxNet are tested u
network conditions in which sources turn ON and OFF with high frequency. We have simul
deterministic transience with different frequencies to observe how both algorithms track to t
min fairness under different levels of volatility. In our simulation, the network with grea
intervals is regarded as less volatile and vice versa. For two transient scenarios correspon
intervals, 10000 timestep and 20000 timestep, the former represents a faster (more volati
network and the latter a slower one (less volatile) .  

We used the same patterns in all experiments with 3 long-lived flows, indexed S1, S2, a
remain ON throughout the experiment. On link 2, five “noise” sources indexed from S4 to S8 
and deactivated periodically with different intervals. We investigate how fast the system tr
expected equilibrium by defining tracking area (TA) metrics computed by the 

ansien

( ) ( ) 2

_ targeti i
istartstep

TA x t x t dt= −∑∫  
stopstep

(28) 

0 time steps, For SumNet, two series of experiments corresponding to two intervals, 10000 and 2000
have been conducted. The experiments vary α  over a wide range and both use the following p
1. SumNet’s equations 

rocedure: 
uration of 300,000 time steps. In the period 

ise” sources 

ng. Since the 
wn in Fig. 5 

ting a warm-
y” state. In our case, as 

o stopstep = 

F M experiments 

(17) and (18) are simulated for a d
from the 60,000th to the 240,000th time step, transience is generated by five “no
periodically turning ON and OFF on link 2 with the given interval.  

2.  Our strategy to choose the duration to measure the TA (28) is described in the followi
transience is periodic, the system’s response will also reach a “periodic steady state” as sho
(a) and (b).  It is the behaviour in this state that we measure. We prepared that by genera
up transient period which is long enough for the system to be in such a “stead
the transient starts at 60,000th time step, we measure TA from startstep = 200,000th t
240,000th step for 3 long-lived sources 1,2 and 3, ignoring the “noise” sources’ flows.  
 

or the axNet network, the sources and links are adjusted as in (25) and (26) and the 
follow the same procedure as for SumNet. However, without necessary involvement of α   w
carry out two ents corresponding to two intervals of transience. Fig

e just need to 
experim . 4 gives t fairness tracking 

a
he 

rea TA against α  in transient scenarios of 10,000 and 20 00 time step intervals. Over
exposes its weak tracking capability in high volatile networks as the val f the 20,000 time
transient scenario, 20,000

SumNetTA , is smaller than that of the 10,000  interv nt, 10,000
SumNTA

For SumNet,  Fig. 4. clearly shows that the well-studied the large 

,0 all, SumNet 
ues o step interval 

 timestep al transie .  et

α  based max-min ap
not always yield max-min fairness in volatile networks. In fact, there exists a value optimalα  wh
SumNet’s fairness tracking performance, i.e., TA is minimum if optimalαα = .  If α α<
decreased when

proach does 
ich optimizes 

, TA is optimal

 α  is increased. Howe optimalα> , then increasingver, ifα α would slow the 
enough to increase the TA values a

respon
e existence 

rge 

se rate 
s shown for both transient of such 

nce 
in Fig. 4  scenarios. Th

optimalα  is conseque of the deceleration of SumNet source’s convergence speed caused by la α . This 
e h illustrat e with 

 
can be explain  Fig. 6, whic es the d  between SumNet source1 rates, o

ranges of 
d by istanc btained 

different α  such as 20,000
optimalα α<  and 20,000

optimalα α> , and the target max-min fair rate und
scenario of interval of 20,000 time steps.   

Interestingly, the optimalα values are different in different transient sce

er transient 

narios. Fig. 4 shows that the 
optimal value of 10,000

SumNetTA is obtained as 10,000 2
optimal

α = , whilst 20,000
SumNetTA  approaches optimal valu

20,000 2.25
optimal

α = . As 

e at greater 

greaterα value implies SumNet to obtain more accurate max-min fairness 
approximation, it can be forecasted that in highly volatile network, it’s hard to achieve good approximated 
max-min fair allocation while maintaining an adequate fairness tracking capability..  

In contrast with SumNet, MaxNet, whose max-min fairness criteria does not rely on α , is shown to 
have fast convergence and therefore a better fairness tracking capability in both high and ow volatile 
networks. Both values of

 l
 10,000

MaxNetTA and 20,000
MaxNetTA  are shown in Fig. 4 to be significantly smal an those of ler th



SumNet. This is also confirmed in Fig. 5(a) and Fig. 5(b), in which source1’s rate under MaxNet converges 
quickly to its new max-min fair equilibrium in all transient scenarios. 

8. CONCLUSION 

 of SumNet 
et to obtain 
ore efficient 

le networks, 
oximated max-min fair allocation, convergence 

speed and fairness tracking capability. Numerical results for the complex transient network environments 
from our analysis of simple systems.  
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Fig. 2. : Network topology: S1, S2 and S3  are source1,source2 
and source3 respectively. 

 

Fig. 3. : Convergence time vs. unfairness index ( )UI  
of SumNet and MaxNet under single transient occurs at 30,000th 

time step 
 

 
Fig. 4. TA of SumNet with [ ]1.25, 6.75α ∈ and of MaxNet in 
transient scenarios with two intervals: 10,000 and 20,000 time 

steps, respectively 

 
 

 
(a) 

 
(b) 

Fig. 5. Convergence properties of SumNet  source1 rate with 
great 6.75α =  and MaxNet source1 rate  in different 

transient scenarios: (a) 10,000 timestep interval transient, (b) 
20,000 timestep interval transient 

 

 
Fig. 6. Convergence properties of SumNet source1 with 
different value of α  and MaxNet source1 under transient 
with interval of 20,000 timestep 

 
Fig.7. Source1’s response in MaxNet and SumNet 
networks with single transient at 30,000th time step
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